NWN .mdl Format Description
21
Introduction

22
Model

23
Defines an nwn model

44
Geometry

55
Nodes:

56
Dummy Node

57
Trimesh Node

78
Vertex List

79
Face List

810
Texture Vertex List

811
Light Node

912
Patch Node

913
Emitter Node

1214
Reference Node

1215
Animation

1316
Animation Node

1417
Orientation Key List

1518
Position Key List

1519
Alpha Key List

1520
Center Key List

1621
Gizmo Key List

1622
Color Key List

1723
Radius Key List

1724
Alpha End Key List

1725
Alpha Start Key List

1826
Birthrate Key List

1827
Bounce Coefficient Key List

1928
Color End Key List

1929
Color Start Key List

1930
Combine Time Key List

2031
Drag Key List

2032
FPS Key List

2033
Frame End List

2134
Frame Start Key List

2135
Gravity Key List

2236
Life Expectancy Key List

2237
Lightning Delay Key List

2238
Lightning Radius Key List

2339
Lightning Scale Key List

2340
Lightning Subdivision Key List

2441
Mass Key List

2442
P2P Bezier 2 Key List

2443
P2P Bezier 3 Key List

2544
Particle Rotation Key List

2545
Random Velocity Key List

2646
Size End Key List

2647
Size Start Key List

2648
Spread Key List

2749
Velocity Key List

2750
X Size Key List

2751
Y Size Key List

	

	Introduction

	This document is intended as a guide to the NWN mdl format. It's purpose is to aid in the creation for editors and converters for the program as well as to help people understand the options available in creating their own custom content for NWN. Finally I hope that creating this guide will fuel discussion about the areas of the format that are still unclear.

The mdl files at a basic level define a scene graph, which is a common data structure for constructing 3d models or scenes. This seems to be a very simple scene graph that takes the form of a tree. (more complex formats, such as maya's DAG, allow arbitrary acyclic graphs.) In a tree each node can have at most one parent, although it may have many children. The children inherit properties from the parent node or can overwrite them with their own values, also the children transformations (position and orientation in this case) are defined relitive to the parent node's transformation. This means that moving or rotating the parent node will also affect child nodes, which is very useful in animation.

The basic object in the mdl format seems to be the model. Each mdl file we have from bioware represents a single model, and each model has it's own scene graph associated with it (as well as animations and other properties). Models also support inheritance from other models.

Other things to note:

Any line beginning with # is a comment.

The models begin with a filedependancy statement (for example: filedependancy Deer.max). This is before the model definition begins. I don't know what this statement does yet. It seems to refer to the max file from which the mdl was made. It could be related to the internal build process, or it could have some other purpose I'm not aware of yet. If anyone has any ideas let me know.

	Model
1 Defines an nwn model

	

	Syntax:

newmodel [model_name]

 Properties

 Geometry

 Animation

donemodel [model_name]

	Description:

The basic object in the mdl format seems to be the model. Each mdl file we have from Bioware represents a single model, and each model has it's own scene graph associated with it (as well as animations and other properties). Models also support inheritance from other models. Each model also has a classification associated with it that specifies the type of model.

	Properties:

setsupermodel [model_name] [parent_model] [additional_parents...]

This sets the parent model(s) from which this model inherits behavior. If there are no parent models the second parameter should be NULL. A child model inherits animations and geometry from it's parent and may override these properties with their own.

classification [model_type]

This defines the type of the model. Valid types we have seen are: Character, Tile, Effects and Item. All of the creature models have been characters. The Tile and Item models (found in gidy_intlight.mdl and gidy_sun.mdl) are used for the environment in the viewer, but it's easy to imagine their possible uses in the actual game. The spells that have been released are classified as tiles. The Effects class appears in fx_ref.mdl which is reffered to by the spells, but is not a parent of them.

setanimationscale [float]

From the name I would guess this is a global control on the length of animations for this model. All of the character models use this setting, the tile and item (which aren't animated) do not.

	Sections:

Geometry;The model's scene graph.

Animation;The model's animations.

	Geometry
Defines the scene graph for a NWN model

	

	Syntax:

beginmodelgeom [model_name]

 Properties

 Nodes

endmodelgeom [model_name]

	Description:

This section defines the model's scene graph. This is a tree with several different types of nodes, although this section is refered to as geometry some of these node types contain other types of data.

This section begins with a beginmodelgeom statement and ends with a endmodelgeom statement. Between these statements are node definitions for each node in the tree.

	Properties:

The following three properties appear only in gidy_intlight.mdl, which is a tile class model provided with the viewer. They do not appear in the spells which are also classed as tiles. Their purpose is unknown.

bmin [int] [int] [int];Unknown

bmax [int] [int] [int];Unknown

radius [int];Unknown

	Nodes:

Nodes are combined to form the scene graph. A list of nodes appear between the beginmodelgeom and endmodelgeom statements. The following types of nodes appear in the models we have seen.

Dummy Node;This node contains no geometric or light data. However it can be used as a parent node and it's children may possibly inherit some properties. This represents a group in MAX.

Trimesh Node;This is geometric data for the models.

Light Node;Represents a light source.

Patch Node;Unknown. (found in a_ba_casts.mdl) It seems to have the same properties as dummy.

Emitter Node;Represents a particle emitter.

Reference Node;Reference to an external model file.

	Dummy Node
Defines a node used for scene graph structure.

	

	Syntax:

node dummy [node_name]

 Properties

endnode

	Description:

This node contains no geometric or light data. However it can be used as a parent node and it's children may possibly inherit some properties. This represents a group in MAX. Dummy nodes are also useful for attaching animations.

	Properties:

parent [node_name]

the parent node in the tree. All nodes have this property. Top level nodes use NULL.

The following three properties are optional:

position [X] [Y] [Z]

The position in 3d space of this node.

orientation [X-Axis] [Y-Axis] [Z-Axis] [rotation_ammount]

the node is rotated around the axis given in x,y,z

wirecolor [red] [green] [blue]

This probably defines the color for the object's wireframe.

	Trimesh Node
Defines a node containing geometry.

	

	Syntax:

node trimesh [node_name]

 Properties

 Vertex List

 Face List

 Texture Vertex List

endnode

	Description:

This node contains geometric data. It contains a list of verticies and texture coordinates, as well as a list of faces that refer to them.

	Properties:

parent [node_name]

the parent node in the tree. All nodes have this property. Top level nodes use NULL.

The following three properties are optional:

position [X] [Y] [Z]

The position in 3d space of this node.

orientation [X-Axis] [Y-Axis] [Z-Axis] [rotation_ammount]

the node is rotated around the axis given in x,y,z

wirecolor [red] [green] [blue]

This probably defines the color for the object's wireframe.

These probably define an opengl material to use for the object. They affect the color and lighting properties of the object. These values combine with the light color and the texture to determine the color of the final object. Ambient light affects all objects in the scene equally. Diffuse light comes from a specific light source. Specular controls the color of specular highlights on shiny objects and shininess controls how shiny an object is. Depending on how texture mapping is done diffuse and ambient colors may have no effect on textured objects. Probably all of these values range from 0 to 1.

ambient [red] [green] [blue]

diffuse [red] [green] [blue]

specular [red] [green] [blue]

shininess [ammount]

bitmap [file_name]

the name of the texture map to use for this node.

(The following properties appear in spell_01.mdl)

danglymesh [??]

Unknown.

period [float]

Unknown. Period could relate to some kind of procedural animation information. Or even procedural geometry or deformation. More experimentation is needed.

tightness [float]

Unknown. Like period there are several possible interpertations of this.

displacement [float]

Unknown. Like period there are several possible interpertations of this.

showdispl [true|false]

Unknown.

displtype [??]

Unknown.

alpha [float]

Unknown. Probably related to transparency.

transparencyhint [??]

Unknown.

tilefade [??]

Unknown.

scale [float]

Possibly a uniform scale parameter. I haven't tested this one yet.

render [??]

Unknown.

Shadow [??]

Unknown. Could indicate if the mesh casts a shadow.

beaming [??]

Unknown.

inheritcolor [??]

Unknown.

selfillumcolor [red] [green] [blue]

This is the missing property used by opengl materials. This probably makes the mesh seem to "glow". The mesh does not act as a light source however.

rotatetexture [??]

Unknown.

center [x] [y] [z]

This may be the center of the node. This could possibly affect rotations.

gizmo SubAnim:Gizmo

Unknown. With this one I'm not even sure what the syntax is. It appears to relate to additional animation information. The associated animation node has a gizmokey (gizmo key) property.

	Sections:

Trimesh nodes have three sections.

Vertex List;A list of points in 3d space that make up the surface of the mesh.

Face List;A list of faces, each one a triangle with end points chosen from the vertex list. Each face is mapped to a set of texture coordinates.

Texture Vertex List;A list of texture coordinates.

	Vertex List
A list of points on a mesh

	

	Syntax:

verts [vert_count]

 [x] [y] [z]

 [x] [y] [z]

 [x] [y] [z]

 .

 .

 .

	Description:

After the verts tag is an integer rpresenting the number of enteries in the list. Each entry is on it's own line and is composed of 3 floating point numbers.

	Face List
A list of triangular faces that make up a mesh.

	

	Syntax:

faces [face_count]

 [v1] [v2] [v3] [s] [t1] [t2] [t3] [unknown]

 [v1] [v2] [v3] [s] [t1] [t2] [t3] [unknown]

 [v1] [v2] [v3] [s] [t1] [t2] [t3] [unknown]

 .

 .

 .

	Description:

After the faces tag is an integer rpresenting the number of enteries in the list. Each entry is on it's own line and is composed of 8 integers. The first three are the endpoints of the triangle, interperted as entries in the vertex list. The 4th is possibly a shading group. The next three are texture coordinates, taken from the texture vertex list. The purpose of the final integer is unknown.

	Texture Vertex List
A list of texture coordinates

	

	Syntax:

tverts [tvert_count]

 [x] [y] [z]

 [x] [y] [z]

 [x] [y] [z]

 .

 .

 .

	Description:

After the tverts tag is an integer rpresenting the number of enteries in the list. Each entry is on it's own line and is composed of 3 floating point numbers. Since the texture coordinates are in 2d, z is always 0

	Light Node
Represents a light source.

	

	Syntax:

node light [node_name]

 Properties

endnode

	Description:

There are a large number of light properties. Some of these properties are unknown and there may be more.

	

	

	

	

	

	Properties:

parent [node_name]

the parent node in the tree. All nodes have this property. Top level nodes use NULL.

The following three properties are optional:

position [X] [Y] [Z]

The position in 3d space of this node.

orientation [X-Axis] [Y-Axis] [Z-Axis] [rotation_ammount]

the node is rotated around the axis given in x,y,z

wirecolor [red] [green] [blue]

This probably defines the color for the object's wireframe.

color [red] [green] [blue]

The color of the light source.

radius [float]

Probably the range of the light.

ambientonly [0|1]

This controls if the light is only an ambient lightsource or if it is directional as well.

isDynamic [0|1]

Unknown.

affectDynamic [0|1]

Unknown.

lightpriority [??]

Unknown. I'm not sure what this does, but a reasonable guess would be it controls when the lightsource casts a shadow. We know that in NWN only the strongest lightsource in an area casts shadows, this may be the value that determines that. Or it could be a flag of some kind.

shadow [0|1]

Probably determines if this light is capable of casting shadows.

lensflares [0|1]

Possibly causes the light source to produce a lens flare effect, sounds cool anyway.

fadingLight [0|1]

Unknown. Might activate some kind of distance fall off for the light. Or it could do just about anything.

	Patch Node

	

	Syntax:

node patch [node_name]

 Properties

endnode

	Description:

Unknown. Seems to be the same as dummy. (found in a_ba_casts.mdl)
Emitter Node

A particle emitter.

Syntax:

node emitter [node_name]

 Properties

endnode

Description:

This is an NWN particle emitter. These nodes appear in spells and effects as well as in some models. They have a ton of properties and can create some interesting effects.

	Properties:

parent [node_name]

the parent node in the tree. All nodes have this property. Top level nodes use NULL.

The following three properties are optional:

position [X] [Y] [Z]

The position in 3d space of this node.

orientation [X-Axis] [Y-Axis] [Z-Axis] [rotation_ammount]

the node is rotated around the axis given in x,y,z

wirecolor [red] [green] [blue]

(there is a lot of speculation in the following, more testing is needed)

colorStart [red] [green] [blue]

This probably defines This is probably the color a particle is at birth.the color for the object's wireframe.

colorEnd [red] [green] [blue]

This is probably the color a particle is at death, color values may be interpolated between these colors ovr the course of the particle's life

alphaStart [float]

This probably controls the transparency of the particle at birth.

alphaEnd [float]

This probably controls the transparency of the particle at death.

sizeStart [float]

This probably controls the size of the particle at birth.

sizeEnd [float]

This probably controls the size of the particle at death.

sizeStart_y [float]

Unknown. At a guess I would say the size properties above provide uniform scale for the particle and these allow streching in the y direction. This suggests properties might exist for x or z as well. Or this could control something else entirely. (like the size of the control gizmo).

sizeEnd_y [float]

frameStart [int]

My guess is that this controls the frame of the animation at which to begin producing particles.

frameEnd [int]

The frame to stop producing particles. These may combine with the fps property below.

birthrate [int]

A control on how fast to spawn new particles.

spawnType [int]

Unknown.

lifeExp [float]

The length of time a particle will "live". When combined with birth rate this controls the number of particles in existance at a time.

mass [float]

The mass of a particle. (used for calculating the effects of forces)

spread [float]

Probably the ammount that the particles spread out from each other once they leave the emitter.

particleRot [float]

Probably the ammount that the particles rotate as they move.

velocity [float]

Probably the initial velocity of a particle leaving the emitter.

randvel [float]

Probably a control on how random the initial velocity of a particle is.

fps [int]

My guess is that this works with frame start and frame end to match the time frame of the emitter with the animation. In that case this would be the number of frames per second. So an emitter that started on frame 30 with fps of 10 might start in the 3rd second of the animation. This is just speculation however.

random [1|0]

Unknown.

inherit [1|0]

Unknown.

inherit_local [1|0]

Unknown.

inherit_part [1|0]

Unknown.

inheritvel [1|0]

Unknown. (inherit velocity)

xsize [int??]

Unknown. (might relate to texture coordinates)

ysize [int??]

Unknown. (might relate to texture coordinates)

bounce [1|0]

Unknown. Possibly controls some sort of collision detection.

bounce_co [float]

Unknown. Could control elasticity of the bounce, or maybe friction.

loop [int?? or 1|0??]

Unknown. Could specify that the emitter loops, possibly a given number of times.

update [Fountain]

Unknown. Could be that there are different emitter types, such as fountains or clouds.

render [Normal | Linked | Motion_blur]

Unknown. Probably controls how the particles are drawn in some way.

Blend [Normal | Lighten]

Unknown.

update_sel [1|0]

Unknown.

render_sel [1|0]

Unknown.

blend_sel [1|0]

Unknown.

deadspace [float]

Unknown.

opacity [float]

Unknown. Maybe a global control on transparency for the whole effect?

blurlength [float]

Unknown. Could control blur ammount.

lightningDelay [float]

Unknown.

lightningRadius [float]

Unknown.

lightningScale [float]

Unknown.

blastRadius [float]

Unknown.

blastLength [float]

Unknown.

twosidedtex [1|0]

Controls if the particles have textures on both sides of them.

p2p [1|0]

Unknown.

p2p_sel [1|0]

Unknown.

p2p_type [Bezier|Gravity]

Unknown.

p2p_bezier2 [float]

Unknown.

p2p_bezier3 [float]

Unknown.

combinetime [float]

Unknown.

drag [float]

Ammount of drag on each particle.

grav [float]

Strength of gravity.

threshold [float]

Unknown.

texture [filename]

Texture for the particles.

xgrid [int]

Unknown. (might relate to texture coordinates)

ygrid [int]

Unknown. (might relate to texture coordinates)

affectedByWind [true|false]

Unknown. Probably controls how wind effects the particles. What controls the wind is an interesting question.

m_isTinted [1|0]

Possibly controls if the particles are tinted by their color or only by their texture. That's just a guess though.

renderorder [int??]

Unknown.

Splat [1|0]

Unknown.

While I wait for 1.31 to hopefully fix some problems I'm having with my campaign under 1.30 I've been dabbling with emitters and spells.

Now a bit of the information in Eligio's guide was from a post I made a long time ago in all innocence. Some of it is wrong. [image: image1.png]

So today I did a rather exhaustive several hour session with emitters trying various things and actually watching them and I think I've gotten some decent information out there.

It should help those working with emitters and de-mystify them a bit for those a bit leery of trying them.

Anyway here's what I came up with today if you spot something wrong or wish to add to this by all means do so:

Some Basics:

Particle emitters are the building block for all the nifty visual effects in the game, from the smoke of the campfire to the fire, to the spraying sparks when two swords meet etc and so on.

They are the projectiles that fly from a spellcasters hands and the webs that wrap around a person when he's ensnared by a giant spider.

So basically they're pretty damn important to know about and sadly the information that we have is by guess and by gosh and in some cases wrong (only myself to blame for some of this) [image: image2.png]

Particle emitters in NWN emit one of two basic things, a flat two polygon object with a texture mapped to it, or a 'chunk' in the form of a small model or mdl.

The particles can be emitted from the emitter at an angle or from the emitter to a target object along a path in the case of p2p or Point To Point emitter.

Lightning is merely a specialized p2p emitter that's set up to spew lightning as its used often enough that it's convenient to have a unique set of controls for it but some controls that dictate specific lightningness. (I make up a lot of words in this thing.)

Because of billboarding the flat particles can appear to be solid rather than flat depending on the various settings or they can be made to stay flat as the camera rolls around. Billboarding is a term that means the engine will constantly move the particle so that it always faces the camera regardless of how the camera is moved, also known as camera alignment in some programs.

The textures that can be mapped to a particle can be animated as well, this is what creates the nifty fire effect. Each particle has a texture sequence that's applied to it that's one frame of a fire animation.

So get to know your emitter, you'll be the better off for it.

Emitter/VFX Animation sequences (as I currently know them):

Note not all vfx's will have every sequence by any means. Many will only have an impact while many vfx's will have an impact, a duration, and a cessation sequence.

cessation - the sequence that fires when a vfx expires.

conjure01 - the sequence that fires during the conjuring phase. If there's a fade sequence it will fire after this one. This is used in the casting animations.

duration - the sequence that fires after impact but before cessation on a vfx. if there's a cessation sequence it will fire after this one.

fade - The sequence that fires at the end of the conjuring phase. Used in the casting animations.

impact - sequence that fires during impact of an projectile emitter, if there's a duration sequence it will fire after this one.

travel01 - the sequence that fires during a spell projectiles travel. NOTE: At this time I know of no way to adjust the speed of a projectile and given the limited firing distance available in NWN this animation sequence seems to be of limited use. It does not repeat, but will play from 0 to X during the length of the travel one time. If the animation cannot fit into the distance traveled the engine will interpolate frames to make it fit.

Events:

Events are different than sequences. In regards to emitters there is only one that I currently know of.

detonate - triggers explosion emitters as far as I know it triggers all exp emitters bound to model base at the same time. You could however use birthrate keyframing to prevent one from going off on any specific detonate event.

Emitter Settings, the values in () are the actual name of the setting that you'd find in the exported MDL, some ()'s go together such as 'blend normal' or 'update fountain' and most are simple 0 for no/off and 1 for yes/on:

NOTE: The following values seem to be duplicated but are included here:

update_sel = 1 to 4 based on the update style, i.e. fountain = update_sel 1
blend_sel = 1 to 3 based on the blend style, i.e. lighten = blend_sel 1
render_sel = 1 to 7 based on the render style i.e. motion_blur = render_sel 7

I don't know if these supersede the update, blend, render entries or compliment them or what but it seems like a simple duplication of information to me.

NOTE: The following entry found in the various MDL's and output by Scooter's MDL Suite, I can find no setting or information for. Your guess is as good as mine as to what it affects:

mass 0

The various settings found in an emitter, the (mdl name), and a fairly correct set of descriptions for what they do:

Emitter Style (Update <blank>):

Fountain (fountain) - pretty much what is says, the particles are emitted in a fountain based on the spread value. Anything from a single line to a spherical shape can be accomplished.

Single (single)- Emits one particle. As an example using this and a gridded texture you could easily display a magic mouth talking. Another setting Loop Single causes this to emit more than once otherwise it emits one time.

Explosion (explosion) - The emitter doesn't emit anything until a 'detonate' event is signaled on a keyframe in an animation that includes it. Then it fires off one burst based on its

settings.

Lighting (lightning) - Generates Point 2 Point lighting effects. Lightning emitters require a target object to work.

Render Types (render <blank>):

Normal (normal) - Spews out a particle that constantly rotates to face the camera

Linked (linked)- Same as above except all particles touch and are stretched where necessary to do so. Example use the ring texture and you can generate an almost chain appearance. Note: this is set by default when you select lightning.

Billboard to Local Z (Billboard_to_Local_z) - Particles face the way they came out regardless of camera movement. Note this will cause them to vanish from the opposite side as particles are one sided. Good idea to turn on twosided for this method.

Billboard to world z (billboard_to_world_z) - Particles face upwards

Aligned to world z (Aligned_to_World_Z)- Not real sure, looks kind of like a cross between normal and billboard to local z. The particles are stretched and at an angle at least visually.

Aligned to particle direction (Aligned_to_Particle_Dir) - The particles are aligned to the angle at which they leave the emitter. This has a subsetting of deadspace.

Motion Blur (Motion_Blur) - Stretches the particles along the path of travel severely and then overlaps them as well. Not a true motion blur more of a smoodge effect.

Blend Mode (blend <blank>):

Normal(normal) - doesn't use alpha data in the texture

Punch-Through (blend_sel 2) - Not sure, visually it appears to be the same as Normal. Note selecting this in the MDL suite does not add a Blend Punch_through as one might expect. Rather it changes blend_sel to blend_sel 2.

Lighten (lighten) - uses alpha data in the texture

Render Order (render_order #) - Not sure. Changing the number doesn't seem to affect anything. Possibly it might affect something like overlapping alphas and determine which should be applied to avoid the disappearing alpha bug.

Emitter Size (X/Y) (xsize # and ysize #)- The possible square/rectangle that a particle can emit from. i.e. a 1/1 sized emitter will not have any real variation in where the particles come from. A 400/500 will have particles emitting from all over the place. The particular point inside the x/y dimensions is random that a particle will emit from. The size is in centimeters. so a 100x100 emitter size would emit particles from a 1 meter by 1 meter square surface. NOTE!!! If Birthrate based on size is selected this value determines the number of particles and no longer determines where from the surface of the particle they emit.

Color start and end (colorstart # # # and colorend # # #)- Obviously the color tint that's applied to the texture that's mapped onto particles at the start and end of their lifespan and is automatically gradiated bewteen them.

Alpha start and end (alphastart # and alphaend #) - sets the level of transparency at the start and end and gradiates between them.

Size start and end (sizestart # and sizeend #) - sets the size of the particle at the start and end and gradiates between them. Note you can set both the x and the y start and end unless you have it locked.

Lock-X- and y- size - Locks y start and end sizes to the same values as X. Has no setting in the MDL just a convenience in the plug rollout.

Birthrate (birthrate #): Obvious, the number of particles spawned in some unknown time length over the course of the animation.

Life expectancy (lifeexp #) - How long the particle will live most likely in seconds.

Acceleration - Gravity. Positive values drop the particles to the ground, negative values make them float upwards.

Spread (spread #): The possible angles that the particles will leave the emitter. 0 = straight line along the emitters forward z axis.

360 = any possible direction forwards or backwards. 180 = any forwards or to the sides but not backwards. Any number between 0 and 360 will work and simply designate the cone effect.

Rotation (particlerot #): How much the particle will rotate along its z axis.

NOTE: if the particle is symmetrical as in the case of say the fxp_ring02 texture then you'll see no effect. Mainly or solely used for chunk emitters to cause the chunks to rotate as they fly out.

Velocity (velocity #): How much velocity of its own the particle will have when it leaves the emitter.

Random Velocity (randvel #): the degree by which the velocity can vary.

Example, a velocity of 1.0 and a random velocity of .5 would have particles that travel between .5 and 1.5 speeds.

Inheritance - Determines where the emitter gets its speed from aside from its inherent velocity as set above. Note these values are exclusive only one should have a 1, the rest should have 0. AN exception to this is the Inherit Velocity which is a checkbox rather than a radio button on the plugin. SO using the MDL Suite its possible to have inherit_vel and one other inherit value = 1.

No Inheritance (all inherit values set to 0) - The particle has no motion other than its own velocity.

Inherit from emitter (inherit 1/0) - if the emitter is moving the particle will start at the speed of the emitter and then the velocity and random velocity settings will add or subtract to this.

Inherit from parent (inherit_local 1/0) - Not sure how this is supposed to differ from inherit from emitter as logical thinking would have the emitter being the parent of the particle. Visually its the same as inherit from emitter.

Inherit from particle (inherit_part 1/0) - Not sure how this differs from the above two as the visual effect is the same.

Inherit Velocity (inherit_vel 1/0) - Checking this makes a no inheritance act the same as inherit from emitter.

Enable Bouncy Particles (bounce 1/0) - Checked and with a coefficient of more than 0 causes particles that hit the ground to bounce. Note,

not all particles that hit will bounce but most will. Those that don't bounce will 'splat' instead. See Splat on collision. The number that splat is low and seems rather random.

Bounce Coefficient (bounce_co #) - How much they bounce.

Birthrate based on size (spawntype 1/0) - If checked the emitter will emit particles based on the size of the emitter. NOTE!!! IF this is checked then the size of the emitter determines the birthrate and not the surface area that emits particles!

Allow color tinting (m_istinted 1/0) - Not sure, visually didn't seem to make any difference. Perhaps in conjunction with other settings or a different type of texture.

Splat on collision (splat 1/0) - Particles that hit the ground will 'splat' or mush out rather than disappear or bounce. Note: with bouncy particles selected some of the particles will splat regardless of this setting.

Affected by Wind (affectedbywind 1/0) - The particles will be pushed around by the wind which is based on the wind settings on a specific area.

Loop Single (loop 1/0) - Determines if a update single emitter will emit more than once.

Texture (texture <name>) - Determines the texture that will be mapped onto the particles.

Two sided (twosidedtex 1/0) - Doubles the particle and flips it so that it has a visible face on both sides.

Animation -

Grid width x and y (xgrid # and ygrid #)-
Divides the texture up into that many parts. i.e. a 2x2 grid width will put one quarter of the texture onto a particle. This would be used for those textures that are 'gridded' up like most of the fire and smoke textures.

Speed(FPS #): determines how quickly the various pieces of the texture, the grids, are mapped to the polygons.

First Frame (framestart #): which grid going across and then down of the texture is first.

Last Frame (frameend #): which grid going across and then down of the texture is last.

Normally First frame would be 0 and last frame would be the grid count - 1.

Example you have a fire texture that is divided up into a 4 x 4 grid of texture patches. Each patch is a bit of flame in a different pose. Your first frame would be 0, your last frame would be 15.

Random Start Frame (random #): picks a random number between First and Last frame numbers and uses that to begin the cycle.

Chunk (chunkname <anme>) - Rather than mapping a texture to a flat plane the emitter fires off the model who's name is put in this box.

Example if you wanted an emitter to emit orcs you could put c_orca in here. No you can't really spawn orcs this way but you get the idea. Mainly used in emitters for explosions to throw debris around.

Lighting settings:

Delay (lightningdelay #): Not sure

Peak Radius (lightningradius #): THe amount of 'jag' that the lightning will take between subdivisions.

Scale (lightningscale #): How thick the lightning is.

Subdivisions (see note): How 'forky' the lightning is. NOTE: This actually sets the birthrate to a power of 2. i.e. set this to 12 and you'll get a birthrate of 4096.

Explosion:

Radius (blastradius #) - The radius of the explosion at a guess.

Length (blastlength #) - Another guess, the length of the explosion

Deadspace (deadspace #) - Something to do with Aligned to Particle Direction.

Motion blur (requires render motion_blur) -

Length (blurlength #) - the distance the particle is stretched to create the psuedo blur.

Opacity (opacity #) - the overriding alpha value set on the particle. NOte, additional alpha'ing of the texture is still applied/combined on top of this.

Point to Point:

Allows the spawing of particles that will follow a patch between the emitter and the target object.

Enable P2P (p2p 1/0) - determines if this is a p2p emitter

P2P_sel 2 is set for this, not sure what it means.

Bezier Path (p2p_type bezier) - distinguishes between bezier and gravity.

Src Tangent (psp_bezier2 1/0) - The initial curve
tgt tangent (psp_bezier3 1/0) - the following curve
Combine time (combinetime 1/0) - I'm assuming it defines the midpoint where the two curves mesh.

IMPORTANT NOTE: As of patch 1.27 or 1.28 it is not possible to use any kind of P2P emitter including lightning in a placeable or tile. It will crash the client although not the toolset. You can still use them in spells or visual effects that are applied via scripting.

Most of these settings not sure about as my current testing set up doesn't allow this kind of emitter.

But educated guesses:

Bezier path draws a bezier curve between emitter and target object based on the source and target tangents and the combine time. If you've used a structured drawing program then you should get the idea.

Gravity (p2p_type gravity) -

Gravity pull (grav #) - the pull of gravity I suppose

Drag (drag #) - Air drag I'm guessing

Threshold (threshold #) - Some point at which something happens.

At a guess, gravity field applies a gravitational pull and air drag on the particles as they're emitted. Threshold is possible the distance at which the two forces are applied after the particles leave the emitter or less likely the speed of the particle.

Some peculiarities discovered during this emitter hunt:

To use a projectile for a MIRV effect its internal name has to be:

vpr_magmisl

Although the filename can be anything. You reference the filename in the various 2da's to use that projectile but the internal name has be that specific name or the engine will default back to the generic blue magic missiles.

To make a MIRV spell you should copy the existing VFX_IMP_MIRV in the VFX.2da as there are settings very specific to it that allow it to mirv.

I'm sure there are many more that I'll come across at some point. Peculiarities that is.

Some of the column headings in the vfx and spells 2da don't mean what they imply. Be warned.

Prime example:

Imp_Impact_Node This column actually designates the projectile that files between point a and b.

	Reference Node

References a model file

	

	Syntax:

node reference [node_name]

 Properties

endnode

	Description:

This node seems to include the contents of another model file into the model. This node appears in the spell models and seems to refer to another file: fx_ref.mdl This node always appears as a child of an emitter node, but not all emitter nodes have a reference node as a child.

	Properties:

parent [node_name]

the parent node in the tree. All nodes have this property. Top level nodes use NULL.

The following three properties are optional:

position [X] [Y] [Z]

The position in 3d space of this node.

orientation [X-Axis] [Y-Axis] [Z-Axis] [rotation_ammount]

the node is rotated around the axis given in x,y,z

wirecolor [red] [green] [blue]

This probably defines the color for the object's wireframe.

refModel [filename]

The file to refer to. In spell_01.mdl and spell_02.mdl this file is fx_ref.mdl.

reattachable [??]

Unknown.

	Animation
Defines an animation for the model.

	

	Syntax:

newanim [anim_name] [model_name]

 Properties

 Animation Nodes

 Events

doneanim [anim_name] [model_name]

	Description:

Each model has a number of animations, some of these may be inherited from a super model. The model may overide these inherited animations with it's own. Each animation has a scene graph which mirrors it's geometry graph, the nodes in this graph are dummy nodes with some special properties that control the animation.

	Properties:

length [float];This is probably the ammount of time the animation will take to complete. This may be affected by the model property setanimationscale.

transtime [float];This seems to have to do with the blending between animations. More testing needed.

animroot [node_name];I'm really not sure about this one. It seems to refer to a node in the animation tree, possibly creating a reference to the root of the tree. However in the case of the bugbear the animroot is set to rootdummy which actually has a parent. This happens in a_ba as well. In deer it actually points to the root of the tree. This may be just a wierd artifact of the exporter though, in the cases where it does not point to the root of the tree, that root contains no information. Probably this tells NWN where the entry point of the animation tree is.

	Sections:

Animation Nodes;The animation's scene graph.

Events;Event cues for the game.

	Animation Node

Defines a node in an animation graph.

	

	Syntax:

node [node type] [node_name]

 Properties

 Key Lists

endnode

	Description:

An animation node matches a node with the same name in the model's scene graph. It has a serries of key lists that define an animation to apply to that node. Animation nodes are sometimes dummy nodes and sometimes the same node type as the geometry being animated. Replacing one node type with another seems to be allowed for animation nodes in the model viewer.

	Properties:

parent [node_name]

the parent node in the tree. All nodes have this property. Top level nodes use NULL.

The following three properties are optional:

position [X] [Y] [Z]

The position in 3d space of this node.

orientation [X-Axis] [Y-Axis] [Z-Axis] [rotation_ammount]

the node is rotated around the axis given in x,y,z

wirecolor [red] [green] [blue];This probably defines the color for the object's wireframe.

	Sections:

Dummy, Patch, and Reference Node Key Lists:

Orientation Key List
Position Key List

Trimesh Node Key Lists:

Alpha Key List
Center Key List
Gizmo Key List
Orientation Key List
Position Key List

Light Node Key Lists:

Color Key List
Orientation Key List
Position Key List
Radius Key List

Emitter Node Key Lists:

Alpha Key List
Alpha End Key List
Alpha Start Key List
Birthrate Key List
Bounce Coefficient Key List
Color End Key List
Color Start Key List
Combine Time Key List
Drag Key List
FPS Key List
Frame End Key List
Frame Start Key List
Gravity Key List
Life Expectancy Key List
Lightning Delay Key List
Lightning Radius Key List
Lightning Scale Key List
Lightning Subdivision Key List
Mass Key List
Orientation Key List
P2P Bezier 2 Key List
P2P Bezier 3 Key List
Particle Rotation Key List
Position Key List
Random Velocity Key List
Size End Key List
Size Start Key List
Spread Key List
Velocity Key List
X Size Key List
Y Size Key List

	Orientation Key List
Animation Key List

	

	Syntax:

orientationkey

 [time] [x] [y] [z] [r]

 [time] [x] [y] [z] [r]

 [time] [x] [y] [z] [r]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.
Orientation controls the rotation of the node.

	Position Key List
Animation Key List

	

	Syntax:

positionkey

 [time] [x] [y] [z]

 [time] [x] [y] [z]

 [time] [x] [y] [z]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.
Position controls the location of the node.

	Alpha Key List
Animation Key List

	

	Syntax:

alphakey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Center Key List
Animation Key List

	

	Syntax:

alphakey

 [time] [x] [y] [z]

 [time] [x] [y] [z]

 [time] [x] [y] [z]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Gizmo Key List
Animation Key List

	

	Syntax:

gizmokey

 [time] [???]

 [time] [???]

 [time] [???]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Color Key List
Animation Key List

	

	Syntax:

colorkey

 [time] [red] [green] [blue]

 [time] [red] [green] [blue]

 [time] [red] [green] [blue]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Radius Key List
Animation Key List

	

	Syntax:

radiuskey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Alpha End Key List
Animation Key List

	

	Syntax:

alphaEndkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Alpha Start Key List
Animation Key List

	

	Syntax:

alphaStartkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Birthrate Key List
Animation Key List

	

	Syntax:

birthratekey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Bounce Coefficient Key List
Animation Key List

	

	Syntax:

bounce_cokey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Color End Key List
Animation Key List

	

	Syntax:

colorEndkey

 [time] [red] [green] [blue]

 [time] [red] [green] [blue]

 [time] [red] [green] [blue]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Color Start Key List
Animation Key List

	

	Syntax:

colorStartkey

 [time] [red] [green] [blue]

 [time] [red] [green] [blue]

 [time] [red] [green] [blue]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Combine Time Key List
Animation Key List

	

	Syntax:

combinetimekey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Drag Key List
Animation Key List

	

	Syntax:

dragkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	FPS Key List
Animation Key List

	

	Syntax:

fpskey

 [time] [int]

 [time] [int]

 [time] [int]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Frame End List
Animation Key List

	

	Syntax:

frameEndkey

 [time] [int]

 [time] [int]

 [time] [int]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Frame Start Key List
Animation Key List

	

	Syntax:

frameStartkey

 [time] [int]

 [time] [int]

 [time] [int]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Gravity Key List
Animation Key List

	

	Syntax:

gravkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Life Expectancy Key List
Animation Key List

	

	Syntax:

lifeExpkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Lightning Delay Key List
Animation Key List

	

	Syntax:

lightningDelaykey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Lightning Radius Key List
Animation Key List

	

	Syntax:

lightningRadiuskey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Lightning Scale Key List
Animation Key List

	

	Syntax:

lightningScalekey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Lightning Subdivision Key List
Animation Key List

	

	Syntax:

lightningSubDivkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Mass Key List
Animation Key List

	

	Syntax:

masskey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	P2P Bezier 2 Key List
Animation Key List

	

	Syntax:

p2p_bezier2key

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	P2P Bezier 3 Key List
Animation Key List

	

	Syntax:

p2p_bezier3key

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Particle Rotation Key List
Animation Key List

	

	Syntax:

particleRotkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Random Velocity Key List
Animation Key List

	

	Syntax:

randvelkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Size End Key List
Animation Key List

	

	Syntax:

sizeEndkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Size Start Key List
Animation Key List

	

	Syntax:

sizeStartkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Spread Key List
Animation Key List

	

	Syntax:

spreadkey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	2 Velocity Key List
Animation Key List

	

	Syntax:

velocitykey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	X Size Key List
Animation Key List

	

	Syntax:

xsizekey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

	Y Size Key List

Animation Key List

	

	Syntax:

ysizekey

 [time] [float]

 [time] [float]

 [time] [float]

 .

 .

 .

endlist

	Description:

This is an Animation Key List. Each line between the opening and closing keywords defines a keyframe. As the animation runs the engine interpolates between keyframes to find the value for each frame and then modifies the model porperty controled by this key list. The time field defines the time of this keyframe, the remaining fields correspond to node properties.

29

